题目内容

设f (x)为可导函数,且满足
lim
x→0
f(1)-f(1-x)
2x
=-1,则曲线y=f (x)在点(1,f(1))处的切线的斜率是(  )
分析:首先根据极限的运算法则,对所给的极限式进行整理,写成符合导数的定义的形式,写出导数的值,即得到函数在这一个点的切线的斜率.
解答:解:∵
lim
x→0
f(1)-f(1-x)
2x
=-1

1
2
lim
x→0
f(1)-f(1-x)
x
=-1

lim
x→0
f(1)-f(1-x)
x
=-2

∴f(1)=-2
即曲线y=f (x)在点(1,f(1))处的切线的斜率是-2,
故选D.
点评:本题考查导数的定义,切线的斜率,以及极限的运算,本题解题的关键是对所给的极限式进行整理,得到符合导数定义的形式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网