题目内容
(1)求数列an=
(n∈N*)的前n项和Sn.
(2)若Tn为数列{bn}的前n项和,且Tn=2bn+n2-3n-2,n∈N*,求bn.
(3)在条件(2)下,设cn=
,(n∈N*)Mn为cn的前n项和,求证:Mn<
.
| n-1 |
| 2n |
(2)若Tn为数列{bn}的前n项和,且Tn=2bn+n2-3n-2,n∈N*,求bn.
(3)在条件(2)下,设cn=
| 1 |
| bn-n |
| 37 |
| 44 |
分析:(1)利用“错位相减法”即可得出;
(2)利用bn=
,可得bn+1=2bn-2n+2,化为bn+1-2(n+1)=2(bn-2n),再利用等比数列的通项公式即可得出.
(3)利用“放缩法”和等比数列的前n项和公式即可得出.
(2)利用bn=
|
(3)利用“放缩法”和等比数列的前n项和公式即可得出.
解答:解:(1)∵Sn=0+
+
+
+…+
+
,
2Sn=
+
+…+
,
两式相减得:Sn=
+
+…+
-
=
-1-
=1-
.
∴Sn=1-
.
(2)当n=1时,b1=T1=2b1+1-3-2,解得b1=4.
∵Tn+1=2bn+1+(n+1)2-3(n+1)-2,①
Tn=2bn+n2-3n-2,②
②-①bn+1=2bn-2n+2,
∴bn+1-2(n+1)=2(bn-2n),好
∴数列{bn-2n}是以b1-2=2为首项,2为公比的等比数列.
∴bn-2n=2•2n-1,
∴bn=2n+2n.
(3)cn=
,当n=1:M1=
<
,
当n≥2,Mn=
+
+…+
<
+
+
+…+
=
+
-
=
+
-
<
<
.
| 1 |
| 22 |
| 2 |
| 23 |
| 3 |
| 24 |
| n-2 |
| 2n-1 |
| n-1 |
| 2n |
2Sn=
| 1 |
| 2 |
| 2 |
| 22 |
| n-1 |
| 2n-1 |
两式相减得:Sn=
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| n-1 |
| 2n |
1-(
| ||
1-
|
| n-1 |
| 2n |
| n+1 |
| 2n |
∴Sn=1-
| n+1 |
| 2n |
(2)当n=1时,b1=T1=2b1+1-3-2,解得b1=4.
∵Tn+1=2bn+1+(n+1)2-3(n+1)-2,①
Tn=2bn+n2-3n-2,②
②-①bn+1=2bn-2n+2,
∴bn+1-2(n+1)=2(bn-2n),好
∴数列{bn-2n}是以b1-2=2为首项,2为公比的等比数列.
∴bn-2n=2•2n-1,
∴bn=2n+2n.
(3)cn=
| 1 |
| 2n+n |
| 1 |
| 3 |
| 37 |
| 44 |
当n≥2,Mn=
| 1 |
| 3 |
| 1 |
| 22+2 |
| 1 |
| 2n+n |
<
| 1 |
| 3 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
=
| 1 |
| 3 |
| ||||
1-
|
| 1 |
| 2 |
=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2n |
| 5 |
| 6 |
| 37 |
| 44 |
点评:熟练掌握“错位相减法”、bn=
、变形利用等比数列的通项公式、“放缩法”和等比数列的前n项和公式等是解题的关键.
|
练习册系列答案
相关题目