题目内容
9.分析 首先通过A为最高点得到M,然后根据A,B的水平距离求得周期,通过图象经过的点求φ
解答 解:由已知图象得到M=3,$\frac{3}{4}T=2+\frac{5}{2}=\frac{9}{2}$,所以T=6=$\frac{2π}{ω}$,所以ω=$\frac{π}{3}$,又图象经过B(-$\frac{5}{2}$,0),所以sin(-$\frac{5π}{6}$+φ)=0,|φ|<$\frac{π}{2}$),所以φ=-$\frac{π}{6}$,
所以f(x)=3sin($\frac{π}{3}$x-$\frac{π}{6}$).
故答案为:3sin($\frac{π}{3}$x-$\frac{π}{6}$).
点评 本题考查了由y=Asin(ωx+φ)的部分图象确定其解析式部分;注意最高点、最低点、零点等关键点.
练习册系列答案
相关题目
19.已知i表示虚数单位,则$|\frac{i}{2i+1}|$=( )
| A. | 1 | B. | 5 | C. | $\frac{{\sqrt{5}}}{5}$ | D. | $\sqrt{5}$ |
20.已知长方体ABCD-A1B1C1D1中,$A{A_1}=AB=\sqrt{3}$,AD=1,则异面直线B1C和C1D所成角的余弦值为( )
| A. | $\frac{{\sqrt{6}}}{4}$ | B. | $\frac{{\sqrt{6}}}{3}$ | C. | $\frac{{\sqrt{2}}}{6}$ | D. | $\frac{{\sqrt{3}}}{6}$ |
17.将直角三角形ABC沿斜边上的高AD折成120°的二面角,已知直角边AB=4$\sqrt{3}$,AC=4$\sqrt{6}$,那么下面说法正确的是( )
| A. | 平面ABC⊥平面ACD | |
| B. | 四面体D-ABC的体积是$\frac{16}{3}\sqrt{6}$ | |
| C. | 二面角A-BC-D的正切值是$\frac{{\sqrt{42}}}{5}$ | |
| D. | BC与平面ACD所成角的正弦值是$\frac{{\sqrt{21}}}{14}$ |
14.已知△ABC的外接圆半径为R,角A,B,C所对的边分别为a,b,c,若asinBcosC+$\frac{3}{2}$csinC=$\frac{2}{R}$,则△ABC面积的最大值为( )
| A. | $\frac{2}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | $\frac{12}{5}$ |
18.已知函数$f(x)=\left\{\begin{array}{l}1,x>0\\-1,x<0\end{array}\right.$,设$g(x)=\frac{f(x)}{x^2}$,则g(x)是( )
| A. | 奇函数,在(-∞,0)上递增,在(0,+∞)上递增 | |
| B. | 奇函数,在(-∞,0)上递减,在(0,+∞)上递减 | |
| C. | 偶函数,在(-∞,0)上递增,在(0,+∞)上递增 | |
| D. | 偶函数,在(-∞,0)上递减,在(0,+∞)上递减 |