题目内容
【题目】如图,在长方体
中,
,点
为线段
上的动点,则下列结论正确的是( )
![]()
A.当
时,
三点共线
B.当
时,![]()
C.当
时,
平面![]()
D.当
时,
平面![]()
【答案】ACD
【解析】
在长方体
中,以点
为坐标原点,建立空间直角坐标系,得到对应点的坐标,以及
,
;根据空间向量的方法,逐项判断,即可得出结果.
在长方体
中,以点
为坐标原点,建立如图所示的空间直角坐标系,
因为
,所以
,
则
,
,
,
,
,
,则
,
;
A选项,当
时,
为
中点,根据长方体结构特征,
为体对角线的中点,因此
也为
中点,所以
三点共线;故A正确;
B选项,当
时,
,由题意可得,
,
,所以由
,解得:
,所以
,即点
为靠近点
的五等分点,所以
,则
,
,所以
,所以
与
不垂直,故B错误;
C选项,当
时,则
,
设平面
的法向量为
,由
,令
,可得:
,又
,
所以
,因此
,所以
平面
;
D选项,当
时,
,所以
,
所以
,
,因此
,
,根据线面垂直定理,可得
平面
.
故选:ACD.
![]()
练习册系列答案
相关题目