题目内容
【题目】已知
,点
满足
,记点
的轨迹为
.斜率为
的直线
过点
,且与轨迹
相交于
两点.
(1)求轨迹
的方程;
(2)求斜率
的取值范围;
(3)在
轴上是否存在定点
,使得无论直线
绕点
怎样转动,总有
成立?如果存在,求出定点
;如果不存在,请说明理由.
【答案】(1)
;(2)
;(3)存在,
.
【解析】
(1)根据双曲线的定义即可求得方程;
(2)联立直线与双曲线方程,转化成方程有解问题;
(3)假设存在点
,联立直线和双曲线整理成二次方程,根据
结合韦达定理求解.
(1)因为
,点
满足
,
所以点
的轨迹为以
为焦点,实轴长为2的双曲线的右支,
设其方程
,则
,
所以轨迹
的方程:
;
(2)斜率为
的直线
过点
,直线方程为
,代入
,
,即
有两个不等正根
,
,
由
得
,当
时,![]()
且![]()
即不等式组的解:![]()
所以
;
(3)假设存在,设点
,使
,
由(2):斜率为
的直线
过点
,直线方程为
,代入
,
,即
有两个不等正根
,
,
,所以
,
![]()
![]()
![]()
![]()
![]()
,对
恒成立,
所以
,解得
,即
,
当直线
斜率不存在时,直线方程
,此时
,
,仍然满足
,
所以这样的点存在,
.
【题目】某网络平台从购买该平台某课程的客户中,随机抽取了100位客户的数据,并将这100个数据按学时数,客户性别等进行统计,整理得到如表:
学时数 |
|
|
|
|
|
|
|
男性 | 18 | 12 | 9 | 9 | 6 | 4 | 2 |
女性 | 2 | 4 | 8 | 2 | 7 | 13 | 4 |
(1)根据上表估计男性客户购买该课程学时数的平均值(同一组中的数据用该组区间的中点值作代表,结果保留小数点后两位);
(2)从这100位客户中,对购买该课程学时数在20以下的女性客户按照分层抽样的方式随机抽取7人,再从这7人中随机抽取2人,求这2人购买的学时数都不低于15的概率.
(3)将购买该课程达到25学时及以上者视为“十分爱好该课程者”,25学时以下者视,为“非十分爱好该课程者”.请根据已知条件完成以下
列联表,并判断是否有99.9%的把握认为“十分爱好该课程者”与性别有关?
非十分爱好该课程者 | 十分爱好该课程者 | 合计 | |
男性 | |||
女性 | |||
合计 | 100 |
附:
,![]()
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【题目】2018年“双十一”全网销售额达
亿元,相当于全国人均消费
元,同比增长
,监测参与“双十一”狂欢大促销的
家电商平台有天猫、京东、苏宁易购、网易考拉在内的综合性平台,有拼多多等社交电商平台,有敦煌网、速卖通等出口电商平台.某大学学生社团在本校
名大一学生中采用男女分层抽样,分别随机调查了若干个男生和
个女生的网购消费情况,制作出男生的频率分布表、直方图(部分)和女生的茎叶图如下:
![]()
男生直方图
分组(百元) | 男生人数 | 频率 |
|
|
|
|
|
|
|
|
|
|
| |
|
| |
|
|
|
|
|
|
|
|
|
合计 |
|
![]()
女生茎叶图
(1)请完成频率分布表的三个空格,并估计该校男生网购金额的中位数(单位:元,精确到个位).
(2)若网购为全国人均消费的三倍以上称为“剁手党”,估计该校大一学生中的“剁手党”人数为多少?从抽样数据中网购不足
元的同学中随机抽取
人发放纪念品,则
人都是女生的概率为多少?
(3)用频率估计概率,从全市所有高校大一学生中随机调查
人,求其中“剁手党”人数的分布列和期望.