题目内容

若向量
a
=(sinθ,cosθ),
b
=(
3
,-1),
a
b
=1
,且θ∈(0,
π
2
)

(1)求θ;
(2)求函数f(x)=cos2x+4cosθsinx的值域.
(1)依题意:
a
b
=
3
sinθ-cosθ=1

所以2sin(θ-
π
6
)=1
,即sin(θ-
π
6
)=
1
2

又A为锐角,易得θ-
π
6
=
π
6
,故θ=
π
3

(2)由(1)可知cosθ=
1
2

所以f(x)=cos2x+2sinx=1-2sin2x+2sinx=-2(sinx-
1
2
)2+
3
2

因为x∈R,则sinx∈[-1,1]
所以,当sinx=
1
2
时,f(x)有最大值
3
2

当sinx=-1时,f(x)有最小值-3
故函数f(x)的值域是[-3,
3
2
]
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网