题目内容
若0<α<
,-
<β<0,cos(α+
)=
,cos(
-
)=
,则cos(α+
)=( )
| π |
| 2 |
| π |
| 2 |
| π |
| 4 |
| 1 |
| 3 |
| β |
| 2 |
| π |
| 4 |
| ||
| 3 |
| β |
| 2 |
A、
| ||||
B、-
| ||||
C、-
| ||||
D、
|
分析:由于(α+
)+(
-
)=α+
,结合题意,可求得sin(α+
)与sin(
-
),再利用两角和的余弦即可求得答案.
| π |
| 4 |
| β |
| 2 |
| π |
| 4 |
| β |
| 2 |
| π |
| 4 |
| β |
| 2 |
| π |
| 4 |
解答:解:∵0<α<
,
∴
<α+
<
,又cos(α+
)=
,
∴sin(α+
)=
=
;
又-
<β<0,
∴-
<
<0,
∴-
<
-
<-
,
又cos(
-
)=
,
∴sin(
-
)=-
,
∴cos(α+
)=cos[(α+
)+(
-
)]
=cos(α+
)cos(
-
)-sin(α+
)sin(
-
)
=
×
-
×(-
)
=
.
故选:D.
| π |
| 2 |
∴
| π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
| π |
| 4 |
| 1 |
| 3 |
∴sin(α+
| π |
| 4 |
1-(
|
2
| ||
| 3 |
又-
| π |
| 2 |
∴-
| π |
| 4 |
| β |
| 2 |
∴-
| π |
| 2 |
| β |
| 2 |
| π |
| 4 |
| π |
| 4 |
又cos(
| β |
| 2 |
| π |
| 4 |
| ||
| 3 |
∴sin(
| β |
| 2 |
| π |
| 4 |
| ||
| 3 |
∴cos(α+
| β |
| 2 |
| π |
| 4 |
| β |
| 2 |
| π |
| 4 |
=cos(α+
| π |
| 4 |
| β |
| 2 |
| π |
| 4 |
| π |
| 4 |
| β |
| 2 |
| π |
| 4 |
=
| 1 |
| 3 |
| ||
| 3 |
2
| ||
| 3 |
| ||
| 3 |
=
5
| ||
| 9 |
故选:D.
点评:本题考查两角和的余弦,考查同角三角函数间的关系,考查分析与运算能力,属于中档题.
练习册系列答案
相关题目
若0<x<
,则2x与3sinx的大小关系( )
| π |
| 2 |
| A、2x>3sinx |
| B、2x<3sinx |
| C、2x=3sinx |
| D、与x的取值有关 |