题目内容
(2012•浦东新区二模)
=
.
| lim |
| n→∞ |
| 2n+3n |
| 3n+1-2n |
| 1 |
| 3 |
| 1 |
| 3 |
分析:由求极限的方法,应先化简要求极限的式子然后再求极限.
解答:解:因为:
=
;
所以:
=
=
=
.
故答案为;
.
| 2n+3n |
| 3n+1-2n |
(
| ||
3-(
|
所以:
| lim |
| n→∞ |
| 2n+3n |
| 3n+1-2n |
| lim |
| n→∞ |
(
| ||
3-(
|
| ||||
|
| 1 |
| 3 |
故答案为;
| 1 |
| 3 |
点评:此题考查了利用分离常量法求函数极限及
(
)n=0这一结论
| lim |
| n→∞ |
| 2 |
| 3 |
练习册系列答案
相关题目