题目内容
【题目】边长为
的等边三角形内任一点到三边距离之和为定值,这个定值等于
;将这个结论推广到空间是:棱长为
的正四面体内任一点到各面距离之和等于________________.(具体数值)
【答案】![]()
【解析】
三角形内任意一点到三边距离和为定值是利用三角形面积相等得到的,类比:可利用四面体的体积相等求得棱长为a的正四面体内任意一点到各个面的距离之和.
解:边长为a的等边三角形内任意一点到三边距离之和是由该三角形的面积相等得到的,
由此可以推测棱长为a的正四面体内任意一点到各个面的距离之和可由体积相等得到.
方法如下,如图,
在棱长为a的正四面体内任取一点P,P到四个面的距离分别为h1,h2,h3,h4.
四面体A﹣BCD的四个面的面积相等,均为
,高为
.
由体积相等得:
.
所以
.
故答案为
.
![]()
【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示
(1)由折线图可以看出,可用线性回归模型拟合月利润
(单位:百万元)与月份代码
之间的关系,求
关于
的线性回归方程,并预测该公司2019年3月份的利润;
![]()
甲公司新研制了一款产品,需要采购一批新型材料,现有
两种型号的新型材料可供选择,按规定每种新型材料最多可使用
个月,但新材料的不稳定性会导致材料损坏的年限不同,现对
两种型号的新型材料对应的产品各
件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:
使用寿命/材料类型 | 1个月 | 2个月 | 3个月 | 4个月 | 总计 |
A | 20 | 35 | 35 | 10 | 100 |
B | 10 | 30 | 40 | 20 | 100 |
经甲公司测算平均每包新型材料每月可以带来
万元收入,不考虑除采购成本之外的其他成本,
材料每包的成本为
万元,
材料每包的成本为
万元.假设每包新型材料的使用寿命都是整月数,且以频率作为每包新型材料使用寿命的概率,如果你是甲公司的负责人,以每包新型材料产生利润的期望值为决策依据,你会选择采购哪款新型材料?
参考数据:
, ![]()
参考公式:回归直线方程
,其中![]()