题目内容
设函数f(x)=logmx,数列{an}是公比为m的等比数列,若f(a2a4…a2 006)=8,则f(a12)+f(a22)+…+f(a2 0062)的值等于A.-1 974 B.-1 990 C.2 022 D.2 038
A
解析:f(a2a4…a2 006)=8
logm[(a1m)(a3m)(a5m)…(a2 005m)]=8
logm[(a1a3a5…a2 005)·m1 003]=8
logm(a1a3a5…a2 005)+logmm1 003=8
logm(a1a3a5…a2 0005)=8-1 003.
又f(a12)+f(a22)+…+f(a2 0062)=2logm(a1a2a3…a2 006)
=2[logm(a1a3a5…a2 005)]+logm(a2a4…a2 006)
=2[8+(8-1 003)]=-1 974.
练习册系列答案
相关题目