题目内容
15.已知{an}是等比数列,且an>0,a4+a3-a2-a1=5,则a5+a6的最小值为( )| A. | 10 | B. | 14 | C. | 16 | D. | 20 |
分析 设 a2+a1=x,等比数列的公比为q,由条件求得 x=$\frac{5}{{q}^{2}-1}$>0,q>1,再由a5+a6 =xq4=$\frac{5{q}^{4}}{{q}^{2}-1}$=5( q2-1+$\frac{1}{{q}^{2}-1}$+1 ),利用基本不等式求出a5+a6的最小值.
解答 解:∵{an}是等比数列,且an>0,a4+a3-a2-a1=5,
设 a2+a1=x,等比数列的公比为q,则a4+a3=xq2,a5+a6=xq4.
再由a4+a3-a2-a1=5,可得 xq2=5+x,
∴x=$\frac{5}{{q}^{2}-1}$>0,q>1.
∴a5+a6=xq4=$\frac{5-{q}^{2}}{{q}^{2}-1}$=5•$\frac{{q}^{4}-1+1}{{q}^{2}-1}$=5( q2+1+$\frac{1}{{q}^{2}-1}$)=5( q2-1+$\frac{1}{{q}^{2}-1}$+2 )≥5 (2+2)=20,
当且仅当q2-1=1时,等号成立,故a5+a6的最小值为20,
故选:D.
点评 本题考查等比数列中两项和的最小值的求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.
练习册系列答案
相关题目
10.解下列不等式:
(1)log3x>2;
(2)log${\;}_{\frac{1}{2}}$(2x-$\frac{7}{8}$)<3;
(3)2x<3;
(4)($\frac{1}{3}$)x-1<2.
(1)log3x>2;
(2)log${\;}_{\frac{1}{2}}$(2x-$\frac{7}{8}$)<3;
(3)2x<3;
(4)($\frac{1}{3}$)x-1<2.
2.若l、m、n是互不相同的空间直线,α,β是不重合的平面,则下列选项中正确的是( )
| A. | 若α∥β,l?α,n?β,则l∥n | B. | 若α⊥β,l?α,则l⊥β | ||
| C. | 若l⊥α,l∥β,则α⊥β | D. | 若l⊥n,m⊥n,则l∥m |
9.下表是高三某位文科生连续5次月考的历史、政治的成绩,结果统计如下:
(1)求该生5次月考历史成绩的平均分和政治成绩的方差
(2)一般来说,学生的历史成绩与政治成绩有较强的线性相关,根据上表提供的数据,求两个变量x、y的线性回归方程$\overline{y}$=$\overline{b}$x+$\overline{a}$
(附:$\overline{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-x)({y}_{i}-y)}{\sum_{i=1}^{n}({x}_{i}-x)^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-nxy}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{x}^{2}}$,$\overline{a}$=y-$\overline{b}$x)
| 月份 | 9 | 10 | 11 | 12 | 1 |
| 历史(x分) | 79 | 81 | 83 | 85 | 87 |
| 政治(y分) | 77 | 79 | 79 | 82 | 83 |
(2)一般来说,学生的历史成绩与政治成绩有较强的线性相关,根据上表提供的数据,求两个变量x、y的线性回归方程$\overline{y}$=$\overline{b}$x+$\overline{a}$
(附:$\overline{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-x)({y}_{i}-y)}{\sum_{i=1}^{n}({x}_{i}-x)^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-nxy}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{x}^{2}}$,$\overline{a}$=y-$\overline{b}$x)