题目内容
【题目】定义在R上的函数f(x)满足:f(1)=1,且对于任意的x∈R,都有f′(x)<
,则不等式f(log2x)>
的解集为 .
【答案】(0,2)
【解析】解:设g(x)=f(x)﹣
x,
∵f′(x)<
,
∴g′(x)=f′(x)﹣
<0,
∴g(x)为减函数,又f(1)=1,
∴f(log2x)>
=
log2x+
,
即g(log2x)=f(log2x)﹣
log2x>
=g(1)=f(1)﹣
=g(log22),
∴log2x<log22,又y=log2x为底数是2的增函数,
∴0<x<2,
则不等式f(log2x)>
的解集为(0,2).
所以答案是:(0,2)
【考点精析】认真审题,首先需要了解对数函数的单调性与特殊点(过定点(1,0),即x=1时,y=0;a>1时在(0,+∞)上是增函数;0>a>1时在(0,+∞)上是减函数).
练习册系列答案
相关题目