题目内容
设
=(sinx,3cosx),
=(sinx+2cosx,cosx),
=(0,-1),
(1)记f(x)=
•
,求f(x)的最小正周期;
(2)把f(x)的图象沿x轴向右平移
个单位,再把所得图象上每一点的纵坐标不变,横坐标变为原来的
倍(ω>0)得到函数y=F(x)的图象,若y=F(x)在[0,
]上为增函数,求ω的最大值;
(3)记g(x)=|
+
|2,当x∈[0,
]时,g(x)+m>0恒成立,求实数m的范围.
| a |
| b |
| c |
(1)记f(x)=
| a |
| b |
(2)把f(x)的图象沿x轴向右平移
| π |
| 8 |
| 1 |
| ω |
| π |
| 4 |
(3)记g(x)=|
| a |
| c |
| π |
| 3 |
f(x)=sinx(sinx+2cosx)+3cos2x=sin2x+2sinxcosx+3cos2x=sin2x+2cos2x+1=
sin(2x+
)+2 …3
(1)周期T=π …4′
(2)F(x)=
sin2ωx+2,
≤
,ω≤1…10
(3)g(x)=sin2x+(3cosx-1)2=8cos2x-6cosx+2
设cosx=t,t∈[
,1]∴p(t)=8t2-6t+λ2+2
p(t)在[
,1]上为增函数∴pmin(t)=p(
)=1,m+1>0,m>-1…16
| 2 |
| π |
| 4 |
(1)周期T=π …4′
(2)F(x)=
| 2 |
| π |
| 4 |
| π |
| 4ω |
(3)g(x)=sin2x+(3cosx-1)2=8cos2x-6cosx+2
设cosx=t,t∈[
| 1 |
| 2 |
p(t)在[
| 1 |
| 2 |
| 1 |
| 2 |
练习册系列答案
相关题目