题目内容
(2013•江西)在△ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1.
(1)求证:a,b,c成等差数列;
(2)若C=
,求
的值.
(1)求证:a,b,c成等差数列;
(2)若C=
| 2π |
| 3 |
| a |
| b |
分析:(1)由条件利用二倍角公式可得sinAsinB+sinBsinC=2 sin2B,再由正弦定理可得 ab+bc=2b2,即 a+c=2b,由此可得a,b,c成等差数列.
(2)若C=
,由(1)可得c=2b-a,由余弦定理可得 (2b-a)2=a2+b2-2ab•cosC,化简可得 5ab=3b2,由此可得
的值.
(2)若C=
| 2π |
| 3 |
| a |
| b |
解答:解:(1)在△ABC中,角A,B,C的对边分别为a,b,c,
∵已知sinAsinB+sinBsinC+cos2B=1,
∴sinAsinB+sinBsinC=2 sin2B.
再由正弦定理可得 ab+bc=2b2,即 a+c=2b,故a,b,c成等差数列.
(2)若C=
,由(1)可得c=2b-a,由余弦定理可得 (2b-a)2=a2+b2-2ab•cosC=a2+b2+ab.
化简可得 5ab=3b2,∴
=
.
∵已知sinAsinB+sinBsinC+cos2B=1,
∴sinAsinB+sinBsinC=2 sin2B.
再由正弦定理可得 ab+bc=2b2,即 a+c=2b,故a,b,c成等差数列.
(2)若C=
| 2π |
| 3 |
化简可得 5ab=3b2,∴
| a |
| b |
| 3 |
| 5 |
点评:本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题.
练习册系列答案
相关题目