题目内容
函数的大致图象为( )
考生甲填报某高校专业意向,打算从5个专业中挑选3个,分别作为第一、第二、第三志愿,则不同的填法有
A.10种 B.60种 C.125种 D.243种
若,则的最小值是( )
A. B. C. D.
抛物线与双曲线上一点的有共同的焦点,两曲线在第一象限的交点为,且到焦点的距离为5,则双曲线的离心率= .
已知,且,则( )
A、 B、 C、 D、
已知函数.
(Ⅰ)讨论的单调性;
(Ⅱ)当时,若存在区间,使在上的值域是,求的取值范围.
已知,则的值为___________.
已知椭圆右焦点为,为椭圆的上顶点,为坐标原点,且是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点分别作直线交椭圆于两点,设两直线的斜率分别为,且,证明:直线过定点.
【选修4-4:极坐标和参数方程】
在直角坐标系中,直线的倾斜角为且经过点.以原点为极点,以轴非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为.
(Ⅰ)若直线与曲线有公共点,求的取值范围;
(Ⅱ)设为曲线上任意一点,求的取值范围.