题目内容
(2010•昆明模拟)已知数列{an}的首项a1=1,前n项和为Sn,且an+1=2Sn+2n+1-1,n=1,2,3,….
(I)设bn=an+2n,n=1,2,3,…,证明数列{bn}是等比数列;
(II)设cn=
,n=1,2,3,…,求c1+c2+…+cn.
(I)设bn=an+2n,n=1,2,3,…,证明数列{bn}是等比数列;
(II)设cn=
| 2n | (1+3n-an)(1+3n+1-an+1) |
分析:(1)由an+1=2Sn+2n+1-1(n≥1),知当n≥2时,an=2Sn-1+2n-1,两式相减得an+1=3an+2n(n≥2),由此能够证明数列{bn}是等比数列.
(II)由(I)知bn=3•3n-1=3n,b1=an2n,得an=3n-2n,由此能求出c1+c2+…+cn.
(II)由(I)知bn=3•3n-1=3n,b1=an2n,得an=3n-2n,由此能求出c1+c2+…+cn.
解答:(I)解:∵an+1=2Sn+2n+1-1(n≥1)
当n≥2时,an=2Sn-1+2n-1
两式相减得an+1=3an+2n(n≥2)…(3分)
从而bn+1=an+1+2n+1=3an+2n+2n+1=3(an+2n)=3bn(n≥2),
∵S2=3S1+22-1,即a1+a2=3a1+3,
∴a2=2a1+3=5,∴b2≠0,bn≠0,
∴
=
=
=3,
故
=3(n=1,2,3,…),
∴数列{bn}是公比为3,首项为3的等比数列.…(6分)
(II)由(I)知bn=3•3n-1=3n,b1=an2n,
∴an=3n-2n,
∴cn=
=
.
则cn=
=
-
.…(10分)
c1+c2+…+cn=
-
+
-
+…+
-
=
-
.…(12分)
当n≥2时,an=2Sn-1+2n-1
两式相减得an+1=3an+2n(n≥2)…(3分)
从而bn+1=an+1+2n+1=3an+2n+2n+1=3(an+2n)=3bn(n≥2),
∵S2=3S1+22-1,即a1+a2=3a1+3,
∴a2=2a1+3=5,∴b2≠0,bn≠0,
∴
| b2 |
| b1 |
| a2+4 |
| a1+2 |
| 9 |
| 3 |
故
| bn+1 |
| bn |
∴数列{bn}是公比为3,首项为3的等比数列.…(6分)
(II)由(I)知bn=3•3n-1=3n,b1=an2n,
∴an=3n-2n,
∴cn=
| 2n |
| (1+3n-an)(1+3n+1-an+1) |
| 2n |
| (1+2n)(1+2n+1) |
则cn=
| 2n |
| (1+2n)(1+2n+1) |
| 1 |
| 1+2n |
| 1 |
| 1+2n+1 |
c1+c2+…+cn=
| 1 |
| 1+21 |
| 1 |
| 1+22 |
| 1 |
| 1+22 |
| 1 |
| 1+23 |
| 1 |
| 1+2n |
| 1 |
| 1+2n-1 |
=
| 1 |
| 3 |
| 1 |
| 1+2n+1 |
点评:本题考查数列的通项公式和前n项和公式的求法,解题时要认真审题,注意迭代法和裂项求和法的合理运用.
练习册系列答案
相关题目