题目内容
【题目】已知函数
,
(e是自然对数的底数),对任意的
R,存在
,有
,则
的取值范围为____________.
【答案】![]()
【解析】
问题转化为f(x)max≤g(x)max,分别求出f(x)和g(x)的最大值,得到关于a的不等式,解出即可.
对任意的x1∈R,存在x2∈[
,2],有f(x1)≤g(x2),
故f(x)max≤g(x)max,
f′(x)=
,(x>0),
令f′(x)>0,解得:0<x<e,
令f′(x)<0,解得:x>e,
故f(x)在(0,e)递增,在(e,+∞)递减,
故f(x)max=f(e)=
,
g′(x)=﹣2ex+a,
①a≤0时,g′(x)≤0,g(x)在[
,2]递减,
g(x)max=g(
)=﹣e
+
a≥
,
解得:a≥
+
(舍),
②a>0时,令g′(x)=0,解得:x=
,
(i)
≤
即a≤
时,g(x)在[
,2]递减,
结合①,不合题意,舍,
(ii)
<
<2即
<a<4e时,
g(x)在[
,
)递增,在(
,2]递减,
故g(x)max=g(
span>)=
≥
,
解得:a≥2;
(iii)
≥2即a≥4e时,
g(x)在[
,2]递增,
g(x)max=g(2)=﹣4e+2a≥
,
解得:a≥2e+
,
综上,a≥2,
故答案为:[2,+∞).
练习册系列答案
相关题目