题目内容
直线y=kx+3与(x-2)2+(y-3)2=4相交于A、B两点,若
的值是
- A.

- B.

- C.

- D.

B
分析:由圆的方程找出圆心坐标与半径r,利用点到直线的距离公式表示出圆心到直线y=kx+1的距离d,再由弦AB的长及圆的半径,利用垂径定理及勾股定理列出关于k的方程,求出方程的解即可得到k的值.
解答:由圆(x-2)2+(y-3)2=4,得到圆心(2,3),半径r=2,
∵圆心到直线y=kx+3的距离d=
,|AB|=2
,
∴|AB|=2
,即|AB|2=4(r2-d2),
∴12=4(4-
),解得:k=
.
故选B.
点评:此题考查了直线与圆相交的性质,涉及的知识有:圆的标准方程,点到直线的距离公式,垂径定理,以及勾股定理,当直线与圆相交时,常常根据垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.
分析:由圆的方程找出圆心坐标与半径r,利用点到直线的距离公式表示出圆心到直线y=kx+1的距离d,再由弦AB的长及圆的半径,利用垂径定理及勾股定理列出关于k的方程,求出方程的解即可得到k的值.
解答:由圆(x-2)2+(y-3)2=4,得到圆心(2,3),半径r=2,
∵圆心到直线y=kx+3的距离d=
∴|AB|=2
∴12=4(4-
故选B.
点评:此题考查了直线与圆相交的性质,涉及的知识有:圆的标准方程,点到直线的距离公式,垂径定理,以及勾股定理,当直线与圆相交时,常常根据垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.
练习册系列答案
相关题目
直线y=kx-3与曲线x2+y2=4无交点,则k的取值范围是( )
A、|k|<
| ||||
B、|k|≤
| ||||
C、k>
| ||||
D、k>-
|
直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M,N两点,若|MN|≥2
,则k的取值范围是( )
| 3 |
A、[-
| ||||||||
B、(-∞,-
| ||||||||
C、[-
| ||||||||
D、[-
|
已知双曲线
-
=1的准线过椭圆
+
=1的焦点,则直线y=kx+3与椭圆至少有一个交点的充要条件为( )
| x2 |
| 8 |
| y2 |
| 24 |
| x2 |
| 8 |
| y2 |
| b2 |
A、k∈(-∞,-
| ||||||||
B、k∈[-
| ||||||||
C、k∈(-∞,-
| ||||||||
D、k∈[-
|