题目内容
3.分析 根据几何概型的计算公式,列出豆子落在阴影区域内的概率与阴影部分面积及正方形面积之间的关系.
解答 解:由题意,设不规则图形的面积为S,则$\frac{S}{4}=\frac{60}{200}$,
∴S=1.2.
故答案为:1.2.
点评 本题考查了几何概型的应用:利用几何概型的意义进行模拟试验,估算不规则图形面积的大小,关键是要根据几何概型的计算公式,探究不规则图形面积与已知的规则图形的面积之间的关系,及它们与模拟试验产生的概率(或频数)之间的关系,并由此列出方程,解方程即可得到答案.
练习册系列答案
相关题目
14.如果a>b,那么下列不等式中正确的是( )
| A. | $\frac{1}{a}>\frac{1}{b}$ | B. | a2>b2 | C. | lg(|a|+1)>lg(|b|+1) | D. | 2a>2b |
14.已知$\overrightarrow a,\overrightarrow b$是单位向量,$\overrightarrow a•\overrightarrow b=0$,若向量c满足$|{\overrightarrow c-\overrightarrow a+\overrightarrow b}$|=1,则|$|{\overrightarrow c-\overrightarrow b}$|的取值范围是( )
| A. | $[{\sqrt{2}-1,\sqrt{2}+1}]$ | B. | $[{1,\sqrt{2}+1}]$ | C. | [0,2] | D. | $[{\sqrt{5}-1,\sqrt{5}+1}]$ |