题目内容

7.已知单位正方体ABCD-A1B1C1D1,E,F分别是棱B1C1、C1D1的中点,试求:
(1)AD1与EF所成角的大小;
(2)AF与平面BEB1所成角的余弦值.

分析 (1)以B1为原点,B1A1为x轴,B1C1为y轴,B1B为z轴,建立空间直角坐标系,利用向量法能求出AD1与EF所成角的大小.
(2)求出平面BEB1的法向量和$\overrightarrow{AF}$,利用向量法能求出AF与平面BEB1所成角的余弦值.

解答 解:(1)以B1为原点,B1A1为x轴,B1C1为y轴,B1B为z轴,建立空间直角坐标系,
∵位正方体ABCD-A1B1C1D1,E,F分别是棱B1C1、C1D1的中点,
∴A(1,0,1),D1(1,1,0),E(0,$\frac{1}{2}$,0),F($\frac{1}{2}$,1,0),
$\overrightarrow{A{D}_{1}}$=(0,1,-1),$\overrightarrow{EF}$=($\frac{1}{2},\frac{1}{2}$,0),
设AD1与EF所成角为θ,
则cosθ=|cos<$\overrightarrow{A{D}_{1}},\overrightarrow{EF}$>|=|$\frac{\frac{1}{2}}{\sqrt{2}×\frac{\sqrt{2}}{2}}$|=$\frac{1}{2}$,
∴θ=60°.
∴AD1与EF所成角为60°.
(2)B(0,0,1),B1(0,0,0),
$\overrightarrow{AF}$=(-$\frac{1}{2}$,1,-1),$\overrightarrow{BE}$=(0,$\frac{1}{2}$,-1,$\overrightarrow{{B}_{1}E}$=(0,$\frac{1}{2}$,0),
设平面BEB1的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{BE}_{\;}}=\frac{1}{2}y-z=0}\\{\overrightarrow{n}•\overrightarrow{{B}_{1}E}=\frac{1}{2}y=0}\end{array}\right.$,∴$\overrightarrow{n}$=(1,0,0),
设AF与平面BEB1所成角为θ,
则sinθ=|cos<$\overrightarrow{AF},\overrightarrow{n}$>|=|$\frac{\overrightarrow{AF}•\overrightarrow{n}}{|\overrightarrow{AF}|•|\overrightarrow{n}|}$|=|$\frac{-\frac{1}{2}}{\sqrt{\frac{9}{4}}}$|=$\frac{1}{3}$.
cosθ=$\sqrt{1-(\frac{1}{3})^{2}}$=$\frac{2\sqrt{2}}{3}$.
∴AF与平面BEB1所成角的余弦值为$\frac{2\sqrt{2}}{3}$.

点评 本题考查异面直线所成角的余弦值的求法,考查线面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网