题目内容
用三段论证明:通项为(为常数)的数列是等差数列.
证明略
证明:因为数列是等差数列,则,其中为常数,
由,得为常数,
所以,以(为常数)的数列是等差数列.
用三段论证明:通项为an=pn+q(p,q为常数)的数列{an}是等差数列.
用三段论证明命题“通项公式为()的数列是等比数列.”的大前提是
设数列{an}的前n项和为Sn,且满足an=2-Sn(n∈N*).
(1)求a1,a2,a3,a4的值并写出其通项公式;
(2)用三段论证明数列{an}是等比数列.