题目内容

7.已知f(x)=$\left\{\begin{array}{l}{2cosπx,x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,则f($\frac{4}{3}$)的值为(  )
A.-1B.1C.$\frac{3}{2}$D.$\frac{5}{2}$

分析 首先运用分段函数的第二段,可得f($\frac{4}{3}$)=f(-$\frac{2}{3}$)+2,再由第一段求得f(-$\frac{2}{3}$)=2cos(-$\frac{2π}{3}$)=-1,即可得到所求值.

解答 解:f(x)=$\left\{\begin{array}{l}{2cosπx,x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,
即有f($\frac{4}{3}$)=f($\frac{1}{3}$)+1=f(-$\frac{2}{3}$)+2,
由f(-$\frac{2}{3}$)=2cos(-$\frac{2π}{3}$)=2×(-$\frac{1}{2}$)=-1,
可得f($\frac{4}{3}$)=-1+2=1.
故选:B.

点评 本题考查分段函数的运用:求函数值,注意运用分段函数的每一段,考查运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网