题目内容
在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*,(Ⅰ)证明:数列{an-n}是等比数列;
(Ⅱ)设bn=nan-n2-n,求数列{bn}的前n项和Sn;
分析:(Ⅰ)把题设整理成an+1-(n+1)=4(an-n)的样式进而可知
=4为常数,判定数列{an-n}是等比数列.
(Ⅱ)由(Ⅰ)中的首项和公比可求得{an-n}的通项公式,进而根据题设求得数列{bn}的通项公式,进而根据错位相减法求得数列{bn}的前n项和Sn.
| an+1-(n+1) |
| an-n |
(Ⅱ)由(Ⅰ)中的首项和公比可求得{an-n}的通项公式,进而根据题设求得数列{bn}的通项公式,进而根据错位相减法求得数列{bn}的前n项和Sn.
解答:(Ⅰ)证明:由题设an+1=4an-3n+1,
得an+1-(n+1)=4(an-n),n∈N+
又a1-1=1≠0∴
=4
∴数列{an-n}是首项为1,且公比为4的等比数列
(Ⅱ)解:由(1)可知an-n=4n-1
而bn=n(an-n)-n=n•4n-1-n
∴Sn=1•40+2•41+3•42+n•4n-1-(1+2+3+n)Tn
=1•40+2•41+3•42+n•4n-1①
4Tn=1•41+2•42+3•43+(n-1)•4n-1+n•4n②
由①-②得:-3Tn=1+4+42+4n-1-n•4n=
-n•4n=
-n•4n
∴Tn=
+
=
+(
-
)•4n
=
+
=
Sn=
-
得an+1-(n+1)=4(an-n),n∈N+
又a1-1=1≠0∴
| an+1-(n+1) |
| an-n |
∴数列{an-n}是首项为1,且公比为4的等比数列
(Ⅱ)解:由(1)可知an-n=4n-1
而bn=n(an-n)-n=n•4n-1-n
∴Sn=1•40+2•41+3•42+n•4n-1-(1+2+3+n)Tn
=1•40+2•41+3•42+n•4n-1①
4Tn=1•41+2•42+3•43+(n-1)•4n-1+n•4n②
由①-②得:-3Tn=1+4+42+4n-1-n•4n=
| 1-4n |
| 1-4 |
| 4n-1 |
| 3 |
∴Tn=
| 1-4n |
| 9 |
| n•4n |
| 3 |
| 1 |
| 9 |
| n |
| 3 |
| 1 |
| 9 |
=
| (3n-1)•4n |
| 9 |
| 1 |
| 9 |
| (3n-1)•4n+1 |
| 9 |
| (3n-1)•4n+1 |
| 9 |
| n(n+1) |
| 2 |
点评:本题主要考查了等比数列的判定和数列的求和问题.当数列是由等比和等差数列构成时,常可用错位相减法求的数列的前n项和.
练习册系列答案
相关题目