题目内容

若实数x、y、z满足x2+y2+z2=1,则xy+yz+zx的取值范围是


  1. A.
    [-1,1]
  2. B.
    [-数学公式,1]
  3. C.
    [-1,数学公式]
  4. D.
    [-数学公式数学公式]
B
分析:首先利用均值不等式,根据整理后求得最大值,进而利用2(xy+yz+zx)=(x+y+z)2-(x2+y2+z2)求得最小值,求得答案.
解答:∵
又∵2(xy+yz+zx)=(x+y+z)2-(x2+y2+z2)≥0-1=-1,

故选B.
点评:本题主要考查了基本不等式的应用.基本不等式是解决多项式和函数的最值问题的常用方法,平时应熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网