题目内容
当n∈N*时,Sn=1-
+
-
+…+
-
,Tn=
+
+
+…+
.
(Ⅰ)求S1,S2,T1,T2;
(Ⅱ)猜想Sn与Tn的关系,并用数学归纳法证明.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
(Ⅰ)求S1,S2,T1,T2;
(Ⅱ)猜想Sn与Tn的关系,并用数学归纳法证明.
(Ⅰ)∵当n∈N*时,Sn=1-
+
-
+…+
-
,Tn=
+
+
+…+
.
∴S1=1-
=
,S2=1-
+
-
=
,T1=
=
,T2=
+
=
(2分)
(Ⅱ)猜想:Sn=Tn(n∈N*),即:
1-
+
-
+…+
-
=
+
+
+…+
(n∈N*)(5分)
下面用数学归纳法证明:
①当n=1时,已证S1=T1(6分)
②假设n=k时,Sk=Tk(k≥1,k∈N*),
即:1-
+
-
+…+
-
=
+
+
+…+
(8分)
则:Sk+1=Sk+
-
=Tk+
-
(10分)
=
+
+
+…+
+
-
(11分)
=
+
+…+
+
+(
-
)
=
+
+…+
+
=Tk+1,
由①,②可知,对任意n∈N*,Sn=Tn都成立.(14分)
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
∴S1=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 7 |
| 12 |
| 1 |
| 1+1 |
| 1 |
| 2 |
| 1 |
| 2+1 |
| 1 |
| 2+2 |
| 7 |
| 12 |
(Ⅱ)猜想:Sn=Tn(n∈N*),即:
1-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
(n∈N*)(5分)
下面用数学归纳法证明:
①当n=1时,已证S1=T1(6分)
②假设n=k时,Sk=Tk(k≥1,k∈N*),
即:1-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2k-1 |
| 1 |
| 2k |
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| k+3 |
| 1 |
| 2k |
则:Sk+1=Sk+
| 1 |
| 2k+1 |
| 1 |
| 2(k+1) |
| 1 |
| 2k+1 |
| 1 |
| 2(k+1) |
=
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| k+3 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2(k+1) |
=
| 1 |
| k+2 |
| 1 |
| k+3 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| k+1 |
| 1 |
| 2(k+1) |
=
| 1 |
| (k+1)+1 |
| 1 |
| (k+1)+2 |
| 1 |
| 2k+1 |
| 1 |
| 2(k+1) |
由①,②可知,对任意n∈N*,Sn=Tn都成立.(14分)
练习册系列答案
相关题目