题目内容

已知不等式xy≤ax2+2y2,若对任意x∈[1,2]且y∈[2,3],该不等式恒成立,则实数a的取值范围是(  )
分析:将a分离出来得a≥
y
x
-2(
y
x
2,然后根据x∈[1,2],y∈[2,3]求出
y
x
的范围,令t=
y
x
,则a≥t-2t2在[1,3]上恒成立,利用二次函数的性质求出t-2t2的最大值,即可求出a的范围.
解答:解:由题意可知:不等式xy≤ax2+2y2对于x∈[1,2],y∈[2,3]恒成立,
即:a≥
y
x
-2(
y
x
2,对于x∈[1,2],y∈[2,3]恒成立,
令t=
y
x
,根据右图可知则1≤t≤3,
∴a≥t-2t2在[1,3]上恒成立,
∵y=-2t2+t=-2(t-
1
4
2+
1
8
,1≤t≤3,
∴ymax=-1,
∴a≥-1
故选A.
点评:本题考查的是不等式与恒成立的综合类问题.在解答的过程当中充分体现了分离参数的方法、恒成立的思想以及整体代换的技巧.值得同学们体会与反思.属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网