题目内容
20.函数$f(x)=2sin({ωx+φ})(ω>0,|φ|<\frac{π}{2})$的图象,其部分图象如图所示,则f(x)=2sin(x-$\frac{π}{4}$).分析 由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
解答 解:由函数f(x)的图象可得A=2,$\frac{3T}{2}$=$\frac{3}{2}$•$\frac{2π}{ω}$=$\frac{13π}{4}$-$\frac{π}{4}$,求得ω=1,
在根据五点法作图可得 1×$\frac{π}{4}$+φ=0,求得φ=-$\frac{π}{4}$,故f(x)=2sin(x-$\frac{π}{4}$),
故答案为:$2sin(x-\frac{π}{4})$.
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,属于基础题.
练习册系列答案
相关题目
8.设函数f(x)是定义在R上的偶函数,对任意x∈R,都有f(x+2)=f(x-2),且当x∈[-2,0]时,f(x)=($\frac{1}{2}$)x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)至少有2个不同的实数根,至多有3个不同的实数根,则a的取值范围是( )
| A. | (1,2) | B. | (2,+∞) | C. | $({1,\root{3}{4}})$ | D. | $[{\root{3}{4},2})$ |
5.已知函数f(x)=x3-2x2+2,则下列区间必存在零点的是( )
| A. | ($-2,-\frac{3}{2}$) | B. | ($-\frac{3}{2},-1)$ | C. | ($-1,-\frac{1}{2}$) | D. | ($-\frac{1}{2},0$) |