ÌâÄ¿ÄÚÈÝ
¡¾ÌâÄ¿¡¿¼ºÖªÔ²F1£º(x+1)2 +y2= r2(1¡Ür¡Ü3)£¬Ô²F2£º(x-1)2+y2= (4-r)2£®
£¨1£©Ö¤Ã÷£ºÔ²F1ÓëÔ²F2Óй«¹²µã£¬²¢Ç󹫹²µãµÄ¹ì¼£EµÄ·½³Ì£»
£¨2£©ÒÑÖªµãQ(m£¬0)(m<0)£¬¹ýµãEбÂÊΪk(k¡Ù0£©µÄÖ±ÏßÓ루¢ñ£©Öй켣EÏཻÓÚM£¬NÁ½µã£¬¼ÇÖ±ÏßQMµÄбÂÊΪk1£¬Ö±ÏßQNµÄбÂÊΪk2£¬ÊÇ·ñ´æÔÚʵÊýmʹµÃk(k1+k2)Ϊ¶¨Öµ£¿Èô´æÔÚ£¬Çó³ömµÄÖµ£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¡¾´ð°¸¡¿£¨1£©¼û½âÎö£¬
£¨2£©´æÔÚ£¬![]()
¡¾½âÎö¡¿
£¨1£©Çó³öÔ²
ºÍÔ²
µÄÔ²ÐĺͰ뾶£¬Í¨¹ýÔ²F1ÓëÔ²F2Óй«¹²µãÇó³ö
µÄ·¶Î§£¬´Ó¶ø¸ù¾Ý
¿ÉµÃ
µãµÄ¹ì¼££¬½ø¶øÇó³ö·½³Ì£»
£¨2£©¹ý
µãÇÒбÂÊΪ
µÄÖ±Ïß·½³ÌΪ
£¬Éè
£¬
£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬¸ù¾ÝΤ´ï¶¨ÀíÒÔ¼°
£¬
£¬¿ÉµÃ
£¬¸ù¾ÝÆäΪ¶¨Öµ£¬ÔòÓÐ
£¬½ø¶ø¿ÉµÃ½á¹û.
£¨1£©ÒòΪ
£¬
£¬ËùÒÔ
£¬
ÒòΪԲ
µÄ°ë¾¶Îª
£¬Ô²
µÄ°ë¾¶Îª
£¬
ÓÖÒòΪ
£¬ËùÒÔ
£¬¼´
£¬
ËùÒÔÔ²
ÓëÔ²
Óй«¹²µã£¬
É蹫¹²µãΪ
£¬Òò´Ë
£¬ËùÒÔ
µãµÄ¹ì¼£
ÊÇÒÔ
£¬
Ϊ½¹µãµÄÍÖÔ²£¬
ËùÒÔ
£¬
£¬
£¬
¼´¹ì¼£
µÄ·½³ÌΪ
£»
£¨2£©¹ý
µãÇÒбÂÊΪ
µÄÖ±Ïß·½³ÌΪ
£¬Éè
£¬![]()
ÓÉ
ÏûÈ¥
µÃµ½
£¬
Ôò
£¬
£¬ ¢Ù
ÒòΪ
£¬
£¬
ËùÒÔ![]()
![]()
£¬
½«¢Ùʽ´úÈëÕûÀíµÃ![]()
ÒòΪ
£¬
ËùÒÔµ±
ʱ£¬¼´
ʱ£¬
.
¼´´æÔÚʵÊý
ʹµÃ
.