题目内容
已知点A(x1,y1),B(x2,y2)(x1x2≠0)是抛物线y2=2px(p>0)上的两个动点,O是坐标原点,向量(Ⅰ)证明线段AB是圆C的直径;
(Ⅱ)当圆C的圆心到直线x-2y=0的距离的最小值为
时,求p的值.
(Ⅰ)证法一:∵|
+
|=|
-
|,
∴(
+
)2=(
-
)2,∴
-
=0
∴x1x2+y1y2=0.
设点M(x,y)是以线段AB为直径的圆上的任意一点,则
·
=0.
即(x-x1)·(x-x2)+(y-y1)·(y-y2)=0.整理得x2+y2-(x1+x2)x-(y1+y2)y=0.
故线段AB是圆C的直径.
证法二:∵|
+
|=|
+
|,∴(
+
)2=(
-
)2,即
·
=0
∴x1x2+y1y2=0,
若点M(x,y)在以线段为直径的圆上,则
·
=-1(x≠x1,x≠x2)去分母得(x-x1)(x-x2)+(y-y1)(y-y2)=0.
展开得x2+y2-(x1+x2)x-(y1+y2)y=0,
所以线段AB是圆C的直径.
证法三:∵|
+
|=|
+
|,∴
+
=0,∴x1x2+y1y2=0,
以AB为直径的圆的方程是:(x-
)2+(y-
)2=
[(x1-x2)2+(y1-y2)2],
整理得x2+y2-(x1+x2)x-(y1+y2)y=0.
(Ⅱ)解法一:设圆C(x,y),则
∵
=2px1,
=2px2(p>0).
∴x1x2=
,又x1x2+y1y2=0,
∴x1x2=-y1y2,
∴-y1y2=
,∵x1x2≠0,∴y1y2≠0,∴y1y2=-4p2,
∴x=
=
(y21+
)=
(y21+
+2y1y2)-
=
(y2+2p2),
所以圆心的轨迹方程为y2=px-2p2,
设圆C到直线x-2y=0的距离为d,则
d=
=
,当y=p时,d有最小值
;由题设得
=
,
∴p=2.
解法二:设圆C的圆心为C(x,y),则
,∵
y21=2px1,
=2px2,(p>0)
∴x1x2=
,又∵x1x2+y1y2=0,∴x1x2=-y1y2.
∵x1x2≠0,∴y1y2=-4p2,∵x=
=
(
+
)=
(
+
+2y1y2)-
=
(y2+2p2),所以圆心的轨迹方程为y2=px-2p2,
设直线x-2y+m=0与x-2y=0的距离为
,则m=±2,
因为x-2y+2=0与y2=px-2p2无公共点,
所以当x-2y-2=0与y2=px-2p2仅有一个公共点时,该点到x-2y=0的距离最小,最小值为
,
∴
消去x得,
y2-2py+2p2-2p=0有Δ=4p2-4(2p2-2p)=0.∵p>0,∴p=2.
解法三:设圆C的圆C(x,y),则
,若圆心C到直线x-2y=0的距离为d,那么d=
,
∵
=2px1,
=2px2(p>0),
∴x1x2=
,又x1x2+y1y2=0,∴x1x2=-y1y2,∵x1x2≠0,
∴y1y2=-4p2,∴d
=![]()
=
,当y1+y2=2p时,d有最小值
,由题意得
=
,∴p=2.