题目内容

9.如图所示,平面四边形ABCD中,AB=AC=BC=$\sqrt{3}$,CD=AD=1,已知$\overrightarrow{AE}$=$λ\overrightarrow{AC}$,$\overrightarrow{CF}$=λ$\overrightarrow{CB}$,λ∈(0,1),且存在实数t使$\overrightarrow{CE}$=t$\overrightarrow{CD}$+(1-t)$\overrightarrow{CF}$,则$\overrightarrow{EA}$•$\overrightarrow{AB}$=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.-$\frac{3}{4}$D.-1

分析 由向量的数量积的定义可得$\overrightarrow{EA}$•$\overrightarrow{AB}$=-$\frac{3}{2}$λ,存在实数t使$\overrightarrow{CE}$=t$\overrightarrow{CD}$+(1-t)$\overrightarrow{CF}$,则D,E,F共线,再由S△CDF=S△CDE+S△CEF,运用三角形的面积公式计算可得λ=$\frac{\sqrt{3}}{3}$,即可得到所求值.

解答 解:$\overrightarrow{EA}$•$\overrightarrow{AB}$=-$\overrightarrow{AE}$•$\overrightarrow{AB}$=-λ$\overrightarrow{AC}$•$\overrightarrow{AB}$
=-$\sqrt{3}$×$\sqrt{3}$λ×cos60°=-$\frac{3}{2}$λ,
由$\overrightarrow{AE}$=$λ\overrightarrow{AC}$,$\overrightarrow{CF}$=λ$\overrightarrow{CB}$,可得AE=CF=$\sqrt{3}$λ,
CE=$\sqrt{3}$(1-λ),
在△ACD中,AC=$\sqrt{3}$,CD=AD=1,则∠DCA=30°,
存在实数t使$\overrightarrow{CE}$=t$\overrightarrow{CD}$+(1-t)$\overrightarrow{CF}$,
即有D,E,F共线.
则S△CDF=S△CDE+S△CEF
即有$\frac{1}{2}$CD•CF=$\frac{1}{2}$CD•CE•sin30°+$\frac{1}{2}$CE•CF•sin60°,
即1•$\sqrt{3}$λ=1•$\sqrt{3}$(1-λ)•$\frac{1}{2}$+$\sqrt{3}$(1-λ)•$\sqrt{3}$λ•$\frac{\sqrt{3}}{2}$,
解得λ=$\frac{\sqrt{3}}{3}$,
则$\overrightarrow{EA}$•$\overrightarrow{AB}$=-$\frac{3}{2}$•$\frac{\sqrt{3}}{3}$=-$\frac{\sqrt{3}}{2}$.
故选:B.

点评 本题考查向量的数量积的定义和向量共线定理,考查三角形的面积公式的运用,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网