题目内容
已知向量
=(sinx,1),
=(cosx,-
).
(Ⅰ) 当
⊥
时,求|
+
|的值;
(Ⅱ)求函数f(x)=
•(
-
)的最小正周期和单调递增区间.
| a |
| b |
| 1 |
| 2 |
(Ⅰ) 当
| a |
| b |
| a |
| b |
(Ⅱ)求函数f(x)=
| a |
| b |
| a |
分析:(Ⅰ)由已知得
•
=0,而|
+
|=
,代入可得;(Ⅱ)化简可得f(x)=
sin(2x+
)-2,易得周期和单调区间.
| a |
| b |
| a |
| b |
|
| ||
| 2 |
| π |
| 4 |
解答:解:(Ⅰ)由已知得:
⊥
,所以
•
=0,
∴|
+
|=
=
=
=
=
;
(Ⅱ)∵f(x)=
•(
-
)=
•
-
2=sinxcosx-
-sin2x-1
=
sin2x-
-
=
sin(2x+
)-2,
所以函数的最小正周期为
=π,
由2kπ-
≤2x+
≤2kπ+
,解得kπ-
≤x≤kπ+
,k∈Z
故函数的单调递增区间为[kπ-
,kπ+
],k∈Z
| a |
| b |
| a |
| b |
∴|
| a |
| b |
(
|
|
|
=
sin2x+1+cos2x+
|
| 3 |
| 2 |
(Ⅱ)∵f(x)=
| a |
| b |
| a |
| a |
| b |
| a |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1-cos2x |
| 2 |
| 3 |
| 2 |
| ||
| 2 |
| π |
| 4 |
所以函数的最小正周期为
| 2π |
| 2 |
由2kπ-
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| 3π |
| 8 |
| π |
| 8 |
故函数的单调递增区间为[kπ-
| 3π |
| 8 |
| π |
| 8 |
点评:本题考查三角函数的运算和向量的结合,属基础题.
练习册系列答案
相关题目