题目内容
从2个白球,2个红球,1个黄球这5个球中随机取出两个球,则取出的两球中恰有一个红球的概率是 .
已知圆锥的表面积为12π,且它的展开图是一个半圆,则圆锥的底面半径为( )cm.
A. B.2 C.2 D.4
若直线是函数图象的一条对称轴,则的值可以是( )
A. B. C. D.
如图,在直三棱柱ABC-A1B1C1中,D为棱BC上一点.
(1)若AB=AC,D为棱BC的中点,求证:平面ADC1⊥平面BCC1B1;
(2)若A1B∥平面ADC1,求的值.
如图,已知A,B分别是函数f(x)=sinωx(ω>0)在y轴右侧图象上的第一个最高点和第一个最低点,且∠AOB=,则该函数的周期是 .
已知椭圆C:的焦点是、,且椭圆经过点。
(1)求椭圆C的方程;
(2)设直线与椭圆交于两点,且以为直径的圆过椭圆右顶点,求证:直线l恒过定点.
双曲线的两条渐近线的夹角为
某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需送往A地至少72吨的货物,派用的每辆车需满载且只能送一次.派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元,问该公司如何合理计划当天派用两类卡车的车辆数,可得最大利润?并求出最大利润.
下图是一个算法流程图,则输出的的值是________.