题目内容
抛物线y2=4x上一点P到焦点F的距离为5,则P点的横坐标为( )
分析:由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,已知|MF|=5,则M到准线的距离也为5,即点M的横坐标x+
,将p的值代入,进而求出x.
| p |
| 2 |
解答:解:∵抛物线y2=4x=2px,∴p=2,
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴|MF|=5=x+
,∴x=4,
故选B.
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴|MF|=5=x+
| p |
| 2 |
故选B.
点评:活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.
练习册系列答案
相关题目