题目内容
5.给出下列命题:①设O,A,B,C是不共面的四点,则对空间任一点P,都存在一唯一的有序实数组x,y,z,使$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$;
②若{$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$}为空间的一个基底,则{$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{2}}$+$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$}也能构成空间的一个基底;
③给定$\overrightarrow{a}$,$\overrightarrow{b}$,若$\overrightarrow{a}$,$\overrightarrow{b}$不共线,则存在无穷多个向量使得它与$\overrightarrow{a}$,$\overrightarrow{b}$一起构成空间的一个基底;
④若$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$不能构成空间的一个基底,则$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$中至少有两个向量共线.
其中正确的个数有( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 根据空间向量的基本定理逐一分析四个结论的真假,综合可得答案.
解答 解:①设O,A,B,C是不共面的四点,则$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$可以作为空间的一组基底,
由空间向量的基本定理可得:对空间任一点P,都存在一唯一的有序实数组x,y,z,使$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,故正确;
②若{$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$}为空间的一个基底,则$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$不共面,则$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{2}}$+$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$也不共面,
则{$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{2}}$+$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$}也能构成空间的一个基底,故正确;
③给定$\overrightarrow{a}$,$\overrightarrow{b}$,若$\overrightarrow{a}$,$\overrightarrow{b}$不共线,则存在无穷多个与$\overrightarrow{a}$,$\overrightarrow{b}$不共面的向量使得它与$\overrightarrow{a}$,$\overrightarrow{b}$一起构成空间的一个基底,故正确;
④若$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$不能构成空间的一个基底,则$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$共面,但$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$中可以均为不共线的向量,故错误.
故正确的命题的个数有3个,
故选:C
点评 本题以命题的真假判断为载体,考查了空间向量的基本定理,难度不大,属于基础题.
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
| A. | 5x-2y+7=0 | B. | 2x-5y+7=0 | C. | 5x+2y-7=0 | D. | 2x+5y-7=0 |