题目内容

1+tanα
1-tanα
=2003,  则
1
cos2α
+tan2α
=
2003
2003
分析:首先进行化切为弦,通分整理,分子和分母用二倍角公式并且都进行因式分解,约分以后,分子分母再同除以角的余弦,完成把弦化切的过程,得到结果.
解答:解:
1
cos2α
+tan2α
=
sin2α+1
cos2α
=
1+2sinαcosα
cos2α-sin2α 

=
(sinα+cosα)2
(cosα+sinα)(cosα-sinα)
=
sinα+cosα
cosα-sinα
=
1+tanα
1-tanα
=2003

故答案为:2003
点评:本题考查三角函数的化简求值,本题解题的关键是看出弦切互化,利用同角的三角函数的关系来完成简化的目的,本题是一个中档题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网