题目内容

17.设a,b,c,d为正实数,且满足a2+b2+c2+d2=4.证明:a+b+c+d≥$\frac{2}{3}$(ab+bc+cd+da+ac+bd).

分析 运用公式:(a+b+c+d)2=a2+b2+c2+d2+2(ab+bc+cd+da+ac+bd)是证明本题的重要前提,再通过适当换元并运用作差比较法,二次函数的性质证明不等式.

解答 证明:(a+b+c+d)2=a2+b2+c2+d2+2(ab+bc+cd+da+ac+bd),
设x=a+b+c+d,y=ab+bc+cd+da+ac+bd,因为a2+b2+c2+d2=4,
所以,x2=4+2y,解得y=$\frac{1}{2}$(x2-4),
作差,A=(a+b+c+d)-$\frac{2}{3}$(ab+bc+cd+da+ac+bd)
=x-$\frac{2}{3}$•$\frac{1}{2}$(x2-4)
=-$\frac{1}{3}$(x-$\frac{3}{2}$)2+$\frac{25}{12}$
根据柯西不等式:a+b+c+d≤$\sqrt{4(a^2+b^2+c^2+d^2)}$=4,即x∈(0,4],
所以,当x=4时,Amin=-$\frac{1}{3}$(4-$\frac{3}{2}$)2+$\frac{25}{12}$=0,
因此,A≥0恒成立,
故a+b+c+d≥$\frac{2}{3}$(ab+bc+cd+da+ac+bd).

点评 本题主要考查了运用作差法证明不等式,涉及到二次函数的性质和柯西不等式的应用,以及对函数思想,换元法的考查,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网