题目内容
6.已知数列{an}的前n项和为Sn,且满足a1=$\frac{1}{2}$,Sn=n2an,求其通项an.分析 Sn=n2an,可得n≥2时,an=Sn-Sn-1,化为:$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$.利用an=$\frac{{a}_{n}}{{a}_{n-1}}$$•\frac{{a}_{n-1}}{{a}_{n-2}}$•$\frac{{a}_{n-2}}{{a}_{n-3}}$•…•$\frac{{a}_{3}}{{a}_{2}}•\frac{{a}_{2}}{{a}_{1}}$•a1,即可得出.
解答 解:∵Sn=n2an,∴n≥2时,an=Sn-Sn-1=n2an-(n-1)2an-1,
化为:$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$.
∴an=$\frac{{a}_{n}}{{a}_{n-1}}$$•\frac{{a}_{n-1}}{{a}_{n-2}}$•$\frac{{a}_{n-2}}{{a}_{n-3}}$•…•$\frac{{a}_{3}}{{a}_{2}}•\frac{{a}_{2}}{{a}_{1}}$•a1=$\frac{n-1}{n+1}$$•\frac{n-2}{n}•\frac{n-3}{n-1}$•…•$\frac{2}{4}•\frac{1}{3}$•$\frac{1}{2}$
=$\frac{1}{n(n+1)}$.
n=1时也成立.
∴an=$\frac{1}{n(n+1)}$.
点评 本题考查了数列递推关系、通项公式、“累乘求积方法”,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
9.已知数列{an}:$\frac{1}{2}$,$\frac{1}{3}$+$\frac{2}{3}$,$\frac{1}{4}+\frac{2}{4}+\frac{3}{4}$,…,$\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+…+\frac{9}{10}$,…,若bn=$\frac{1}{{a}_{n}{a}_{n+2}}$,那么数列{bn}的前n项和Sn等于( )
| A. | 2-$\frac{2}{n+2}$ | B. | 3-$\frac{4n+6}{{n}^{2}+3n+2}$ | C. | $\frac{3}{2}-\frac{2n+3}{{n}^{2}+3n+2}$ | D. | 4-$\frac{4}{n+2}$ |
11.为了参加全运会,对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如表.
(1)画出茎叶图
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、标准差,并判断说明选谁参加比赛更合适.
(1)画出茎叶图
| 甲 | 27 | 38 | 30 | 37 | 35 | 31 |
| 乙 | 33 | 29 | 38 | 34 | 28 | 36 |
15.已知集合A={x|(x-1)(x+2)>0},集合B={x|1<2x+1<4},则A∩B等于( )
| A. | (-2,1) | B. | (-2,0) | C. | (0,1) | D. | (1,$\frac{3}{2}$) |
12.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f(2)的x的取值范围是( )
| A. | $({-\frac{1}{2},\frac{2}{3}})$ | B. | $({-\frac{1}{2},\frac{3}{2}})$ | C. | $({-\frac{1}{2},\frac{1}{3}})$ | D. | $({\frac{1}{2},2})$ |