题目内容
抛物线上的点与直线上的点之间距离的最小值为________.
(本题满分16分;第(1)小题5分,第(2)小题5分,第(3)小题6分)
设、为坐标平面上的点,直线(为坐标原点)与抛物线交于点(异于).
若对任意,点在抛物线上,试问当为何值时,点在某一圆上,并求出该圆方程;
若点在椭圆上,试问:点能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;
对(1)中点所在圆方程,设、是圆上两点,且满足,试问:是否存在一个定圆,使直线恒与圆相切.
抛物线的准线的方程为,该抛物线上的每个点到准线的距离都与到定点的距离相等,圆是以为圆心,同时与直线和相切的圆,
(Ⅰ)求定点的坐标;
(Ⅱ)是否存在一条直线同时满足下列条件:
① 分别与直线和交于、两点,且中点为;
② 被圆截得的弦长为2.
(本小题满分12分)
已知直线l1:4x:-3y+6=0和直线l2x=-p/2:.若拋物线C:y2=2px上的点到直线l1和直线l2的距离之和的最小值为2.
(I )求抛物线C的方程;
(II)若以拋物线上任意一点M为切点的直线l与直线l2交于点N,试问在x轴上是否存 在定点Q,使Q点在以MN为直径的圆上,若存在,求出点Q的坐标,若不存在,请说明理由.
已知抛物线上的点,直线过点且与抛物线相切,直线:交抛物线于点,交直线于点,记的面积为,抛物线和直线,所围成的图形面积为,则( )
A. B.
C. D.随的值而变化