题目内容

如图,已知曲线C1:y=x3(x≥0)与曲线C2:y=-2x3+3x(x≥0)交于点O、A,直线x=t(0<t<1)与曲线C1、C2分别相交于点B、D,
(Ⅰ)写出四边形ABOD的面积S与t的函数关系S=f(t);
(Ⅱ)讨论f(t)的单调性,并求f(t)的最大值。
解:(Ⅰ)由题意得交点O、A的坐标分别是(0,0),(1,1),
f(t)=S△ABD+S△OBD=|BD|·|1-0|=|BD|=(-3t3+3t),
即f(t)=-(t3-t),(0<t<1)。
(Ⅱ)f'(t)=-t2+,令f'(t)=0,解得t=
当0<t<时,f'(t)>0,从而f(t)在区间(0,)上是增函数;
<t<1时,f'(t)<0,从而f(t)在区间(,1)上是减函数;
所以当t=时,f(t)有最大值为f()=
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网