题目内容
观察下列恒等式:
∵
=-
,
∴tanα-
=-
①
∴tan2α-
=-
②
tan4α-
=-
③
由此可知:tan
+2tan
+4tan
-
=( )
∵
| tan2a-1 |
| tanα |
| 2(1-tan2α) |
| 2tanα |
∴tanα-
| 1 |
| tanα |
| 2 |
| tan2α |
∴tan2α-
| 1 |
| tan2α |
| 2 |
| tan4α |
tan4α-
| 1 |
| tan4α |
| 2 |
| tan8α |
由此可知:tan
| π |
| 32 |
| π |
| 16 |
| π |
| 8 |
| 1 | ||
tan
|
| A、-2 | B、-4 | C、-6 | D、-8 |
分析:将欲求三角式的第一项与最后一项合并起来,可用所给公式化简,接下来再和其它的式子继续合并化简即可.
解答:解:∵tan
-
=-
,
∴原式=2tan
-
+4tan
=
+4tan
=4×(-
)=-8.
选D.
| π |
| 32 |
| 1 | ||
tan
|
| 2 | ||
tan
|
∴原式=2tan
| π |
| 16 |
| 2 | ||
tan
|
| π |
| 8 |
=
| -4 | ||
tan
|
| π |
| 8 |
| 2 | ||
tan
|
选D.
点评:本题主要考查三角函数式的化简,属于中档题,三角函数式的化简和求值是高考考查的重点内容之一 通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍.
练习册系列答案
相关题目
观察下列恒等式:
∵
∴tanα-
=-
①
∴tan2α-
=-
②
tan4α-
=-
③
由此可知:tan
+2tan
+4tan
-
=( )
| A.-2 | B.-4 | C.-6 | D.-8 |