题目内容

若实数x,y满足
x-y+1≥0
x+y≥0
x≤0
,则z=3x+2y
的最小值是
1
1
分析:令t=x+2y,要求z的最小值,只要求解t的最小值,作出不等式组表示的平面区域,由于t=x+2y,可知直线在y轴上的截距越大,t越大,可求t的最小值,进而可求z的最小值
解答:解:令t=x+2y
作出不等式组表示的平面区域,如图所示
由于t=x+2y可得y=-
1
2
x+
1
2
t
,根据直线在y轴上的截距越大,t越大
∴直线t=x+2y平移到点O(O,0)时,t取得最小值0,此时,z=1
故答案为:1
点评:本题主要考查了线性规划的简单应用,解题的关键是明确目标函数的几何意义
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网