题目内容
(本小题12分)设数列满足,.(1)求数列的通项;(2)设,求数列的前项和
(1)(2)
解析
(本小题满分12分,(Ⅰ)小题5分,(Ⅱ)小题7分)
设的导数为,若函数的图像关于直线对称,且.
(Ⅰ)求实数的值(Ⅱ)求函数的极值
(本小题12分)
A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验。每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效。若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组。设每只小白鼠服用A有效的概率为,服用B有效的概率为。
(Ⅰ)求一个试验组为甲类组的概率;
(Ⅱ) 观察3个试验组,用表示这3个试验组中甲类组的个数,求的分布列和数学期望。
(Ⅰ)求实数的值
(Ⅱ)求函数的极值
(本小题12分)
设,对于有穷数列(…,), 令为…,中的最大值,称数列为的“创新数列”. 数列中不相等项的个数称为的“创新阶数”. 例如数列的创新数列为2,2,3,7,7,创新阶数为3.
考察自然数…,的所有排列,将每种排列都视为一个有穷数列.
(Ⅰ)若, 写出创新数列为3,4,4,5,5的所有数列;
(Ⅱ) 是否存在数列,使它的创新数列为等差数列?若存在,求出所有的数列,若不存在,请说明理由.