题目内容
若四点共线,且满足,则( )
A. B. C. D.
执行如图所示的程序框图,如果输入的,则输出的M等于( )
A.3 B. C. D.
若,且,则的值为( )
设函数.有下列五个命题:
①若对任意,关于的不等式恒成立,则;
②若存在,使得不等式成立,则;
③若对任意及任意,不等式恒成立,则;
④若对任意,存在,使得不等式成立,则;
⑤若存在及,使得不等式成立,则.
其中,所有正确结论的序号为______.
如图,网格纸上小正方形的边长为,粗实线画出的是某多面体的三视图,则该多面体的各面中,面积最大的值是( )
甲、乙两人共同抛掷一枚硬币,规定硬币正面朝上甲得1分,否则乙得1分,先积得3分者获胜,并结束游戏.
(1)求在前3次抛掷中甲得2分,乙得1分的概率;
(2)若甲已经积得2分,乙已经积得1分,求甲最终获胜的概率;
(3)用表示决出胜负抛硬币的次数,求的分布列及数学期望.
如图所示数阵中,用表示第行的第个数,则依此规律为( )
A. B. C. D.
某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交元的管理费,预计当每件商品的售价为元时,一年的销售量为万件.
(1)求该连锁分店一年的利润(万元)与每件商品的售价的函数关系式;
(2)当每件商品的售价为多少元时,该连锁分店一年的利润最大,并求出的最大值.
已知函数,若不等式的解集为.
(1)求的值;
(2)已知为正数,且,证明:.