题目内容
已知a、b均为正实数,n∈N*,求证:
证明:
(an+bn)-
(an+1+bn+1)
=
[(an+bn)(a+b)-2(an+1+bn+1)]
=
(abn+anb-an+1-bn+1)
=
[a(bn-an)+b(an-bn)]
=
(bn-an)(a-b).
∵a、b为正实数,n∈N*,
∴a+b>0,a-b与an-bn同为正或同为负或同为零.
∴
·(bn-an)(a-b)≤0,
即
≤
(an+1+bn+1).
练习册系列答案
相关题目