题目内容
【题目】已知椭圆
的左右焦点分别为
,若椭圆上一点
满足
,过点
的直线
与椭圆
交于两点
.
(1)求椭圆
的方程;
(2)过点
作
轴的垂线,交椭圆
于
,求证:存在实数
,使得
.
【答案】(1)
;(2)证明见解析.
【解析】试题分析:(1)第(1)问,由
得到a=2,再把点
的坐标代入椭圆方程,解方程组即得椭圆的方程.(2)第(2)问,设
的方程为
.
设点
,
,再求出NG的方程,证明直线
过点
,即可证明
存在实数
,使得
.
试题解析:
(1)依题意,
,故
.
将
代入椭圆
中,解得
,
故椭圆
的方程为:
.
(2)由题知直线
的斜率必存在,设
的方程为
.
设点
,
,则
,
联立
,得
.
即
,
则
,
,![]()
由题可得直线
方程为
,
又∵
,
.
∴直线
方程为
,
令
,整理得![]()
,
即直线
过点
.
又∵椭圆
的右焦点坐标为
,
∴三点
,
,
在同一直线上.
∴ 存在实数
,使得
.
练习册系列答案
相关题目
【题目】某地区某农产品近几年的产量统计如表:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代码 | 1 | 2 | 3 | 4 | 5 | 6 |
年产量 | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(1)根据表中数据,建立
关于
的线性回归方程
;
,![]()
(2)若近几年该农产品每千克的价格
(单位:元)与年产量
满足的函数关系式为
,且每年该农产品都能售完.
①根据(1)中所建立的回归方程预测该地区2019(
)年该农产品的产量;
②当
为何值时,销售额
最大?