题目内容

已知条件p:x<1,条件q:<1,则p是q的条件                

 

【答案】

既不充分也不必要条件

【解析】

试题分析:根据题意,由于条件p:x<1,条件q:<1,那么可知q:,因此根据集合之间的互不包含的关系,可知p是q的条件既不充分也不必要条件。

考点:充分条件

点评:判断充要条件的方法是:①若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件;②若p?q为假命题且q?p为真命题,则命题p是命题q的必要不充分条件;③若p?q为真命题且q?p为真命题,则命题p是命题q的充要条件;④若p?q为假命题且q?p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网