题目内容

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的右顶点为A,O是坐标原点,以A为圆心的圆与渐近线交于P、Q两点,且∠PAQ=60°,OQ=3OP,求双曲线的离心率.

分析 确定△QAP为等边三角形,设AQ=2R,则OP=R,利用勾股定理,结合余弦定理,即可得出结论.

解答 解:因为∠PAQ=60°且OQ=3OP,
所以△QAP为等边三角形,
设AQ=2R,则OP=R,
渐近线方程为y=$\frac{b}{a}$x,A(a,0),取PQ的中点M,则AM=$\frac{|-ab|}{\sqrt{{a}^{2}+{b}^{2}}}$
由勾股定理可得(2R)2-R2=($\frac{|-ab|}{\sqrt{{a}^{2}+{b}^{2}}}$)2
所以(ab)2=3R2(a2+b2)①
在△OQA中,$\frac{(3R)^{2}+(2R)^{2}-{a}^{2}}{2•3R•2R}$=$\frac{1}{2}$,所以7R2=a2
①②结合c2=a2+b2,可得e=$\frac{c}{a}$=$\frac{\sqrt{7}}{2}$.

点评 本题考查双曲线的性质,考查余弦定理、勾股定理,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网