题目内容
(2012•浦东新区二模)记数列{an}的前n项和为Sn.已知向量
=(cos
+sin
,1)(n∈N* )和
= (an,cos
-sin
) (n∈N* )满足
∥
.
(1)求数列{an}的通项公式;
(2)求S30;
(3)设bn=nan,求数列{bn}的前n项的和为Tn.
| a |
| nπ |
| 3 |
| nπ |
| 3 |
| b |
| nπ |
| 3 |
| nπ |
| 3 |
| a |
| b |
(1)求数列{an}的通项公式;
(2)求S30;
(3)设bn=nan,求数列{bn}的前n项的和为Tn.
分析:(1)由已知可得 an=λ(cos
+sin
,1),且 λ=cos
-sin
,故an=(cos
-sin
)•(cos
+sin
,1)=cos
.
(2)根据数列{an}的前几项分别为1,-
,-
,1,-
,-
,1,-
,-
,…可得{an}为周期为3的周期数列,且 a3k-2+a3k-1+a3k=0,k∈z,由此求得S30 的值.
(3)根据bn=nan =n cos
,分 n=3k,n=3k-1,n=3k-2,分别求出数列{bn}的前n项的和为Tn.
| nπ |
| 3 |
| nπ |
| 3 |
| nπ |
| 3 |
| nπ |
| 3 |
| nπ |
| 3 |
| nπ |
| 3 |
| nπ |
| 3 |
| nπ |
| 3 |
| 2nπ |
| 3 |
(2)根据数列{an}的前几项分别为1,-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(3)根据bn=nan =n cos
| 2nπ |
| 3 |
解答:解:(1)∵
∥
,∴
=λ
=λ(cos
+sin
,1),再由
= (an,cos
-sin
),
可得 an=λ(cos
+sin
,1),且 λ=cos
-sin
.
∴an=(cos
-sin
)•(cos
+sin
,1)=cos2
- sin2
=cos
.
(2)数列{an}的前几项分别为1,-
,-
,1,-
,-
,1,-
,-
,…为周期为3的周期数列,
且 a3k-2+a3k-1+a3k=0,k∈z.
故 S30 =0.
(3)∵bn=nan =n cos
,故当 n=3k,k∈N* 时,
∵b3k-2+b3k-1+b3k=(3k-2)(-
)+(3k-1)(-
)+3k•1=
,
∴Tn=T3k=
=
×
=
.
当 n=3k-1,k∈N*时,Tn=T3k-1=T3k-b3k=
-3k•1=-
=-
•
=-
.
当 n=3k-2,k∈N* 时,
Tn=T3k-2-b3k-b3k-1=
-3k-(3k-1)(-
)=-
+
=-
.
故 Tn=
.
| a |
| b |
| b |
| a |
| nπ |
| 3 |
| nπ |
| 3 |
| b |
| nπ |
| 3 |
| nπ |
| 3 |
可得 an=λ(cos
| nπ |
| 3 |
| nπ |
| 3 |
| nπ |
| 3 |
| nπ |
| 3 |
∴an=(cos
| nπ |
| 3 |
| nπ |
| 3 |
| nπ |
| 3 |
| nπ |
| 3 |
| nπ |
| 3 |
| nπ |
| 3 |
| 2nπ |
| 3 |
(2)数列{an}的前几项分别为1,-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
且 a3k-2+a3k-1+a3k=0,k∈z.
故 S30 =0.
(3)∵bn=nan =n cos
| 2nπ |
| 3 |
∵b3k-2+b3k-1+b3k=(3k-2)(-
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
∴Tn=T3k=
| 3k |
| 2 |
| 3 |
| 2 |
| n |
| 3 |
| n |
| 2 |
当 n=3k-1,k∈N*时,Tn=T3k-1=T3k-b3k=
| 3k |
| 2 |
| 3k |
| 2 |
| 3 |
| 2 |
| n+1 |
| 3 |
| n+1 |
| 2 |
当 n=3k-2,k∈N* 时,
Tn=T3k-2-b3k-b3k-1=
| 3k |
| 2 |
| 1 |
| 2 |
| 3k |
| 2 |
| 3k -1 |
| 2 |
| 1 |
| 2 |
故 Tn=
|
点评:本题主要考查数列的函数的函数特性,数列求和,两个向量共线的性质,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关题目