题目内容
设对所有实数x,不等式x2log2
+2xlog2
+log2
>0恒成立,则a的取值范围为______.
| 4(a+1) |
| a |
| 2a |
| a+1 |
| (a+1)2 |
| 4a2 |
∵不等式x2log2
+2xlog2
+log2
>0恒成立
由二次不等式的性质可得,log2
>0且△=4(log2
)2-log2
•log2
×4<0
令t=log2
即(1+log2
)2-(2+log2
)(2log2
-2)<0
整理可得,(log2
+5)(log2
-1)>0
∵log2
>0
∴log2
>1
解可得,0<a<1
故答案为:0<a<1
| 4(a+1) |
| a |
| 2a |
| a+1 |
| (a+1)2 |
| 4a2 |
由二次不等式的性质可得,log2
| 4(a+1) |
| a |
| 2a |
| a+1 |
| 4(a+1) |
| a |
| (a+1)2 |
| 4a2 |
令t=log2
| a+1 |
| a |
即(1+log2
| a |
| a+1 |
| a+1 |
| a |
| a+1 |
| a |
整理可得,(log2
| a+1 |
| a |
| a+1 |
| a |
∵log2
| 4(a+1) |
| a |
∴log2
| a+1 |
| a |
解可得,0<a<1
故答案为:0<a<1
练习册系列答案
相关题目