题目内容
设△ABC的内角A,B,C所对的边a,b,c成等比数列,则
的范围是( )
| sinAcotC+cosA |
| sinBcotC+cosB |
| A.(0,+∞) | B.(0,
| C.(
| D.(
|
设三边的公比是q,三边为a,aq,aq2,
原式=
=
=
=
=
=q
∵aq+aq2>a,①
a+aq>aq2②
a+aq2>aq,③
解三个不等式可得q>
0<q<
,
综上有
<q<
,
故选C.
原式=
| ||
|
=
| sinAcosC+cosAsinC |
| sinBcosC+cosBsinC |
=
| sin(A+C) |
| sin(B+C) |
=
| sinB |
| sinA |
| b |
| a |
∵aq+aq2>a,①
a+aq>aq2②
a+aq2>aq,③
解三个不等式可得q>
| ||
| 2 |
0<q<
| ||
| 2 |
综上有
| ||
| 2 |
| ||
| 2 |
故选C.
练习册系列答案
相关题目